
Christoph Fünfzig

Dr.-Ing. Christoph Fünfzig

Functional Programming in Python

for Big Data

1

Christoph Fünfzig

Question:

How much do you trust a global variable (global max) used

in a parallel system with 1000 cores/servers

(on a scale 1-10)?

Introduction

Motivation

2

array

Core 1 Core 2
begin end

endPart1=beginPart2

global max: 425

Christoph Fünfzig

Learning Outcomes

− By the end of this 15-minute session,

you understand the concept of code that scales in principle.

Learning Outcomes

3

from Emanuele Gemo: The design and analysis of novel integrated phase-change photonic memory and computing devices

negligible

bandwidthlatency

X100-10000

x100

Christoph Fünfzig

Learning Outcomes

− By the end of this 15-minute session,

you understand the concept of code that scales in principle.

− made possible by functional programming, which allows:

partitioning the data (scalability),

replicating the data (reliability).

Learning Outcomes

4

Christoph Fünfzig

Functional Programming for Big Data

− Immutability:

Data is read-only. We don't change it, we transform it into a

new version.

− Pure Functions: Input transforms to desired Output.

No Side Effects (like printing or global variables).

→Data is placed best (which? where? when?).

5

Functional Programming Motivation

Christoph Fünfzig

Functional Programming Transformations

1. Map (narrow transformation)

Execute a function on a data row aka. tuple.

2. Filter (narrow transformation)

Select a data row/tuple based on a condition.

3. Reduce (wide transformation)

Group data rows by key and execute aggregation function

(e.g. sum, min, max).

Functional Programming

6

Christoph Fünfzig

Continued Example: Word Count

Read a textfile (consisting of rows), separate into words (resp.

spaces) and count the #occurrences of each word.

3 data rows (data input)

split into single words (map)

count (reduction)

Continued Example WC

7

how much ground would a groundhog hog, if a groundhog could hog ground. a groundhog
would hog all the ground he could hog, if a groundhog could hog ground.

how
much
..

how 1
much 1
ground 2
would 1
a 3

Christoph Fünfzig

Framework PySpark @BigData-Industry

PySpark represents data as RDD (resilient distributed dataset) objects

.. Transformations (map,filter,reduce) on RDD objects store just the function

Lazy Evaluation

.. Actions (take(10),tail(10),collect(),distinct(),..) evaluate the transformations

This is a way to represent workflow:

Repeatable! Optimizable! Scalable!

Framework PySpark

8

filter,

reduceBy

collect

map

Christoph Fünfzig

Continued Example: Word Count

Short Demo of PySpark Code: loftr.txt (0.4gb, ~500k words)

Continued Example WC, Demo

9

Input

words = sc.textFile(“data/loftr.txt“)

words2 = words.map(lambda line: re.sub(r“[\s,;\.:!-<>“, “ “, line.lower())

.strip().split(“ “).flatMap(lambda w: w)

words2 = words2.cache() # structuring: memory caching

Transformations: filter first, then count

stopwords = words2.filter(lambda word: word in stopwordsList) # only stopw.

stopwordsMapped = stopwords.map(lambda word: (word, 1)) #word to tuple(word,1)

stopwordsCount = stopwordsMapped.reduceByKey(lambda c1, c2: c1+c2) #add

Actions

result = list(stopwordsCount.collect())

print(result, len(result))

Christoph Fünfzig

Continued Example: Word Count

We have seen intermediate stages of the word-data processing!

Task: You are interested in the words, which are not stopwords

and occur 10 times.

Question:

1. Which transformation keeps those words?

(map/filter/reduce)

2. Which transformation orders are possible?

(map, reduce, filter)/(filter, map, reduce)

Continued Example WC

10

Christoph Fünfzig

Summary & Closing Remarks

− Functional Python allows resilient/repeatable, distributed, lazy

transformations of big datasets

− Functional patterns implemented by Python functions or

lambda-expressions

− Heavy use in BigData-Industry: Spark/Dash in Azure

Databricks, AWS, SAP Spark

Strategy: Move the logic to the data! Optimize data movement!

− Structured API on top of RDDs:

DataFrame, SQL UserDefinedFunction

Summary

11

	Folie 1: Functional Programming in Python for Big Data
	Folie 2: Introduction
	Folie 3: Learning Outcomes
	Folie 4: Learning Outcomes
	Folie 5: Functional Programming for Big Data
	Folie 6: Functional Programming Transformations
	Folie 7: Continued Example: Word Count
	Folie 8: Framework PySpark @BigData-Industry
	Folie 9: Continued Example: Word Count
	Folie 10: Continued Example: Word Count
	Folie 11: Summary & Closing Remarks

