Functional Programming in Python
for Big Data

Dr.-Ing. Christoph Funfzig

\ & Motivation

Introduction

endPart1=beginPart2
begin end
«Core 1 « Core 2

global max: 425

Question:

How much do you trust a global variable (global max) used
iIn a parallel system with 1000 cores/servers

(on a scale 1-10)?

Christoph Fiinfzig 2

F o Learning Outcomes

Learning Outcomes

— By the end of this 15-minute session,
you understand the concept of code that scales in principle.

_ _ standard
latency i bandwidth Capacity | technology
m — — — —I O r O - . . . S S
& | negligible | <256 bit i SRAM 1] o
(o] : : 1]O
- I SC— : J—————————.
< . 700-40 5 IE
E' 1-100ns | '~ kB-MB: SRAM |3
L. . GiB/s 5 =
h g I:... ““-“““"""“““-Tl m
E o | 100 ns ‘910 GiB/s GB DRAM |
w o . : 47
nl <Ol ps-ms >2 GiB/s mass storage GB-TB |
ol QOI 1-20¢ i]
=1 8= ms . removable drives NB-TB: HODD |o
<| 52 - a2 Y y10Q
E- F TTTL T AT T LT T | " H'H'.H'H' " e e * el {
El - w, e
Y xo! >100ms cloud storage HDD | >
g4« -
|_ m I+Hp-..-+p1|.-+-+"|.-+"p-|.-+" beansrnsnanarnsnsnarnsnarasnanes] I_
x O \ Magnetic tape | m
= : high archival storage “:3;" [

from Emanuele Gemo: The design and analysis of novel integrated phase-change photonic memory and computing devices

Christoph Fiinfzig 3

& Learning Outcomes

Learning Outcomes

— By the end of this 15-minute session,
you understand the concept of code that scales in principle.

— made possible by functional programming, which allows:
partitioning the data (scalabllity),
replicating the data (reliability).

Christoph Funfzig

\ & Functional Programming Motivation

Codeoptimierung

Functional Programming for Big Data

— Immutabillity:
Data is read-only. We don't change it, we transform it into a
new version.

— Pure Functions: Input transforms to desired Output.
No Side Effects (like printing or global variables).

—Data is placed best (which”? where”? when?).

Christoph Funfzig

£ Functional Programming

Functional Programming Transformations

1. Map (narrow transformation)
Execute a function on a data row aka. tuple.

2. Filter (narrow transformation)
Select a data row/tuple based on a condition.

3. Reduce (wide transformation)
Group data rows by key and execute aggregation function
(e.g. sum, min, max).

Christoph Funfzig

\ & Continued Example WC

Continued Example: Word Count

Read a textfile (consisting of rows), separate into words (resp.
spaces) and count the #occurrences of each word.

3 data rows (data input)

how much ground would a groundhog hog, if a groundhog could hog ground. a groundhog
would hog all the ground he could hog, if a groundhog could hog ground.

split into single words (map)

how
much

count (reduction

how 1
much 1
ground 2
would 1
a 3

Christoph Fiinfzig 7

\ & Framework PySpark

Framework PySpark @BigData-Industry

PySpark represents data as RDD (resilient distributed dataset) objects
.. Transformations (map,filter,reduce) on RDD objects store just the function
Lazy Evaluation

.. Actions (take(10),tail(10),collect(),distinct(),..) evaluate the transformations

This is a way to represent workflow: o reduceBy %" *

textFile partitionBy

Repeatable! Optimizable! Scalable! '

mapP'irtitinns

collect

Christoph Fiinfzig 8

\ & Continued Example WC, Demo

Continued Example: Word Count

Short Demo of PySpark Code: loftr.txt (0.4gb, ~500k words)

Input
words = sc.textFile(“data/loftr.txt")

words2 = words.map(lambda line: re.sub(r‘[\s,;\.:I-<>% “ “ line.lower())
strip().split(" “).flatMap(lambda w: w)
words2 = words2.cache() # structuring: memory caching

Transformations: filter first, then count

stopwords = words2.filter(lambda word: word in stopwordsList) # only stopw.
stopwordsMapped = stopwords.map(lambda word: (word, 1)) #word to tuple(word,1)
stopwordsCount = stopwordsMapped.reduceByKey(lambda c1, c2: c1+c2) #add

Actions

result = list(stopwordsCount.collect())

print(result, len(result))

Christoph Fiinfzig)

& Continued Example WC

Continued Example: Word Count

We have seen intermediate stages of the word-data processing!

Task: You are interested in the words, which are not stopwords
and occur >10 times.

Question:

1. Which transformation keeps those words?
(map/filter/reduce)

2. Which transformation orders are possible?
(map, reduce, filter)/(filter, map, reduce)

Christoph Funfzig

y. Summary

Summary & Closing Remarks

— Functional Python allows resilient/repeatable, distributed, lazy
transformations of big datasets

— Functional patterns implemented by Python functions or
lambda-expressions

— Heavy use in BigData-Industry: Spark/Dash in Azure
Databricks, AWS, SAP Spark
Strategy: Move the logic to the data! Optimize data movement!

— Structured API on top of RDDs:
DataFrame, SQL UserDefinedFunction

Christoph Funfzig

	Folie 1: Functional Programming in Python for Big Data
	Folie 2: Introduction
	Folie 3: Learning Outcomes
	Folie 4: Learning Outcomes
	Folie 5: Functional Programming for Big Data
	Folie 6: Functional Programming Transformations
	Folie 7: Continued Example: Word Count
	Folie 8: Framework PySpark @BigData-Industry
	Folie 9: Continued Example: Word Count
	Folie 10: Continued Example: Word Count
	Folie 11: Summary & Closing Remarks

