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Question:

How much do you trust a global variable (global max) used 

in a parallel system with 1000 cores/servers 

(on a scale 1-10)?

Introduction

Motivation
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Learning Outcomes

− By the end of this 15-minute session, 

you understand the concept of code that scales in principle.

Learning Outcomes
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Learning Outcomes

− By the end of this 15-minute session, 

you understand the concept of code that scales in principle.

− made possible by functional programming, which allows:

partitioning the data (scalability),

replicating the data (reliability).

Learning Outcomes
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Functional Programming for Big Data

− Immutability:

Data is read-only. We don't change it, we transform it into a 

new version. 

− Pure Functions: Input transforms to desired Output. 

No Side Effects (like printing or global variables).

→Data is placed best (which? where? when?).
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Functional Programming Motivation
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Functional Programming Transformations

1. Map (narrow transformation)

Execute a function on a data row aka. tuple. 

2. Filter (narrow transformation)

Select a data row/tuple based on a condition. 

3. Reduce (wide transformation)

Group data rows by key and execute aggregation function 

(e.g. sum, min, max).  

Functional Programming
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Continued Example: Word Count

Read a textfile (consisting of rows), separate into words (resp. 

spaces) and count the #occurrences of each word.

3 data rows (data input)

split into single words (map)

count (reduction)

Continued Example WC
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how much ground would a groundhog hog, if a groundhog could hog ground. a groundhog 
would hog all the ground he could hog, if a groundhog could hog ground.

how
much 
..

how  1
much  1 
ground  2
would  1
a  3
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Framework PySpark @BigData-Industry

PySpark represents data as RDD (resilient distributed dataset) objects

.. Transformations (map,filter,reduce) on RDD objects store just the function

Lazy Evaluation

.. Actions (take(10),tail(10),collect(),distinct(),..) evaluate the transformations

This is a way to represent workflow: 

Repeatable! Optimizable! Scalable!

Framework PySpark
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filter,

reduceBy

collect

map
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Continued Example: Word Count

Short Demo of PySpark Code: loftr.txt (0.4gb, ~500k words)

Continued Example WC, Demo
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# Input

words = sc.textFile(“data/loftr.txt“)

words2 = words.map(lambda line: re.sub(r“[\s,;\.:!-<>“, “ “, line.lower())

.strip().split(“ “).flatMap(lambda w: w)

words2 = words2.cache() # structuring: memory caching

# Transformations: filter first, then count

stopwords = words2.filter(lambda word: word in stopwordsList) # only stopw.

stopwordsMapped = stopwords.map(lambda word: (word, 1)) #word to tuple(word,1)

stopwordsCount = stopwordsMapped.reduceByKey(lambda c1, c2: c1+c2) #add

# Actions

result = list(stopwordsCount.collect()) 

print(result, len(result))
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Continued Example: Word Count

We have seen intermediate stages of the word-data processing! 

Task: You are interested in the words, which are not stopwords 

and occur 10 times.

Question:

1. Which transformation keeps those words? 

(map/filter/reduce) 

2. Which transformation orders are possible? 

(map, reduce, filter)/(filter, map, reduce)

Continued Example WC
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Summary & Closing Remarks

− Functional Python allows resilient/repeatable, distributed, lazy 

transformations of big datasets 

− Functional patterns implemented by Python functions or 

lambda-expressions

− Heavy use in BigData-Industry: Spark/Dash in Azure 

Databricks, AWS, SAP Spark

Strategy: Move the logic to the data! Optimize data movement!

− Structured API on top of RDDs:

DataFrame, SQL UserDefinedFunction 

Summary
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